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The Ising partition function for a graph counts the number of bipartitions of the
vertices with given sizes, with a given size of the induced edge cut. Expressed as
a 2-variable generating function it is easily translatable into the corresponding
partition function studied in statistical physics. In the current paper a compara-
tively efficient transfer matrix method is described for computing the generating
function for the n×n grid with periodic boundary. We have applied the method
to up to the 15×15 grid, in total 225 vertices. We examine the phase transition
that takes place when the edge cut reaches a certain critical size. From the
physical partition function we extract quantities such as magnetisation and
susceptibility and study their asymptotic behaviour at the critical temperature.

KEY WORDS: 2D Ising model; partition function; external non-zero field;
exact computation; transfer matrix.

1. INTRODUCTION

The Ising model of ferromagnetism has been thoroughly studied since its
conception in the 1920’s. It was solved in the 1-dimensional case by Ernst
Ising himself and in the (infinite) 2-dimensional case without an external
field by Lars Onsager in 1944. Somewhat later Bruria Kaufman gave a zero
field solution for the finite rectangular grid, with or without cyclic bound-
aries. For an introduction see ref. 1. The model is centered around a parti-
tion function which in the general case is notoriously hard to compute
although it is easy to formulate. The Ising partition function, formal defi-
nition below, can be computed in polynomial time for graphs imbedded in



surfaces of low genus when the external field is excluded. In particular,
Beale (2) has made an easy-to-use program in Mathematica which imple-
ments Kaufmans solution for the zero field partition function for the m×n
grid with periodic boundary. Using this program, a desktop computer
easily computes the partition function for, say, the 64×64 grid in a few
days.
The situation becomes very different when we add the external field. If

we stay with oblong objects, the easiest to handle are graphs of the form
G×Pn where G is a graph, hopefully with many automorphisms, and Pn
denotes the path with n vertices. Thus Pm×Pn denotes the m×n grid with
open boundary, Cm×Pn the m×n grid which is periodic in the first direc-
tion and open in the second (we refer to this as a semiopen m×n grid),
while Cm×Cn denotes the closed m×n grid. Of these three families the
easiest by far to handle seems to be the semiopen kind.
In ref. 3 it is described how to use the dihedral group in order to sim-

plify the computation of, for instance, the Ising partition function for the
graph Cm×Pn and this computation has been performed for m·n [ 220
when m [ 11 and also for m=n [ 13. In ref. 4 the full partition function
(i.e., with external field) is computed for a number of grids with open
boundary. The largest square shaped of these was the 16×16 grid with
open boundary. We have computed a complete set of partition functions
for Pm×Pn where m+n [ 27 and also for m·n [ 180.
The current article reports an improved method for computing the full

partition function for n×n grids with periodic boundary. We have applied
it successfully to the case n [ 15. Previously, the largest square shaped grid
with periodic boundary to be studied was the 10×10 grid by Baker. (5) He
divided the graph into smaller manageable parts, and, using the inherent
Markov property of the Ising partition function, managed to compute
numerically several quantities of physical interest at some thirty tempera-
ture points in double precision. However, although Baker makes use of an
exactly computed intermediate polynomimal from which it in principle is
possible to obtain the exact Ising partition function by (time consuming)
change of variables he does not in fact obtain the coefficients of the parti-
tion function (neither exactly nor in double precision). We, in contrast, do.
The method described here is based on the use of transfer matrices.

The curse of this method is that it involves the computation of the traces of
very large matrices, which tend to have entries that are formal polynomials
in two variables. The traditional method, see, e.g., ref. 6, involves the
computation of the trace of the nth power of a square matrix of order 2n.
This method can today be used for the 10×10 grid, say, but then it
requires gigabytes of memory and some skillful programming. We have
performed this particular computation using a 2 gigabyte node for a week
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in 1998 at the Center for Parallel Computers in Stockholm. The source
code, written in Fortran 90, and the resulting polynomials can be down-
loaded from http://www.math.umu.se/~phl.
The method described in the current paper is also exponential, but

substantially faster and less space consuming. It involves computing the
trace of the product of 2n matrices each of order at most 2 Nn/2M. This
method made it possible to run the 10×10 case on a Macintosh 9600
computer in 5.5 hours (yes, the two runs gave the same output).
A periodic boundary is beneficial from a theoretical point of view

since it makes the graph regular, and indeed, vertex transitive. This adds
substantial symmetry, which in principle can be used to reduce the amount
of necessary work.
What we actually compute is a generating function

Z(G; x, y)=C
i, j
ai, jx iy j

for a graph G on n vertices and m edges. Here ai, j is the number of biparti-
tions of the vertices into sets of order (n−j)/2 and (n+j)/2 respectively,
with (m−i)/2 edges between them.
Evaluating the partition function in a certain point gives the partition

function typically studied in statistical physics,

Z(G; ebJ, ebh)

where b=−1/kT. From this partition function we obtain various quanti-
ties such as the internal energy, magnetisation, susceptibility etc., these are
defined in Section 5. In Section 6 we plot some of these functions and also
try to estimate their asymptotic behaviour at the critical temperature in
terms of n. We also take a quick look at the behaviour on the anti-ferro-
magnetic side. The partition function Z(G; x, y) itself (i.e., its coefficients)
undergoes a phase transition when the edge cut i reaches a certain critical
size. At this point the distribution of the difference j in size of the biparti-
tions goes from unimodal to essentially bimodal. A study of this is made in
Section 7.

2. NOTATION AND DEFINITIONS

A simple graph G=(V, E) is an ordered pair where V is a set of ver-
tices and E, the edges, is a set of 2-subsets of V. If W is a subset of V(G)
then G[W] is the subgraph of G induced by W·G−W is the graph
obtained by deleting the vertices in W, i.e., G[W̄], where W̄=V(G)0W. If
W1, W2 ı V(G) then [W1, W2] is the set of edges having one end in W1 and
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the other in W2. If F ı E(G) then G−F is the graph obtained by deleting
the edges F from G. Also, H=(V, F) is called a spanning subgraph of G.
If F is a set of edges having one end in the graph G then G 2 F is the graph
G together with the edges F and the vertices at the other end of F. We let
Pn and Cn denote the path and cycle respectively on n vertices. If G and H
are graphs then G×H denotes the cartesian product of G and H. The
vertices of G×H are {(v, w) : v ¥ V(G), w ¥ V(H)}. Two vertices (v1, w1)
and (v2, w2) are adjacent iff v1=v2 and {w1, w2} ¥ V(H) or w1=w2 and
{v1, v2} ¥ V(G). For example, Pm×Pn is the m×n grid with open boundary,
and Cm×Cn is the same but with periodic boundary. The function
s: VQ {−1,+1} is the state of the graph (or, a spin configuration) and sv
is the spin of vertex v. The restriction of s toW is denoted sW.

Definition 2.1. Given a state s we define the energy ns(G) and
magnetisation ms(G) of a graph G as

ns(G)= C
{u, v} ¥ E(G)

susv and ms(G)= C
v ¥ V(G)

sv

IfW ı V(G) and F ı E(G) then

ns(G, W)= C
{u, v} ¥ [W, W]

susv,

ns(G, F)= C
{u, v} ¥ F

susv,

ms(G, W)= C
v ¥W
sv

We suppress the G and s from n and m when the context leaves no
room for ambiguity.

Definition 2.2. The Ising partition function Z(G; x, y) for a graph
G=(V, E) in variables x and y is defined as

Z(G; x, y)= C
s ¥ {−1,+1}V

xns(G) yms(G)

Definition 2.3. The coefficients ai, j and ai is defined by

Z(G; x, y)=C
i, j
ai, jx iy j and Z(G; x, 1)=C

i
aix i
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Since we will use only the variables x and y we henceforth write Z(G).
By definition ai, j is the number of states at energy i and magnetisation j,
and ai is the number of states at energy i. Note that ai, j=ai, −j; given a
state s we flip each spin to obtain −s and this preserves the energy but
reverses the magnetisation. Also, for bipartite graphs we have ai=a−i; flip
each spin of one part and the energy of each edge changes its sign. In
general though, we have ai ] a−i.
Let Z(G, sW) be the partition function when the vertices in W keeps

their spins fixed to sW,

Z(G, sW)=C
sW̄

xns(G)yms(G)

where W̄ is the complement ofW.

3. POLYGRAPHS AND TRANSFER MATRICES

We begin this section by introducing the polygraph, as described in
ref. 7, see also ref. 6 where they are called graph schemes. A polygraph
consists of a set of disjoint graphs G1,..., Gp and a set of binary relations
X1,..., Xp where Xi ı V(Gi−1)×V(Gi), for i=1,..., p, and the binary rela-
tions will be thought of as sets of edges. We count the indices modulo p
so that, e.g., G0 means Gp and Gp+1 means G1. Let Wp=W({Gi}, {Xi},
i=1,..., p) denote the polygraph having vertices V(G1) 2 · · · 2 V(Gp)
and edges X1 2 E(G1) 2 · · · 2Xp 2 E(Gp). A particularly nice polygraph is
obtained when Gi=G and Xi=X for i=1,..., p; denote this polygraph
by W(G, X, p). For example, if G=({v},”) and X={(v, v)}, then
W(G, X, p) is the cycle on p vertices. Let Di be the domain of Xi and let Hi
be the graph Xi 2 Gi on vertices Di 2 V(Gi) and edges Xi 2 E(Gi), see
Fig. 1. We refer to Di and Di+1 as the in-vertices and out-vertices respec-
tively of Hi. Note by the way that Di and Di+1 are disjoint sets.

Fig. 1. Structure of polygraph Wp and Hi, respectively.
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Define the matrices Ti for i=1,..., p with entries,

Ti(z, t)=Z(Hi, sDi=z, sDi+1=t) y−m(Di) (1)

The shape of matrix Ti is 2 |Di|×2 |Di+1|. The following theorem holds,

Theorem 3.1.

trace(T1 · · ·Tp)=Z(Wp)

Proof. See, e.g., refs. 4 or 6. L

Example 3.2. We describe the standard, but inefficient, way of
computing Z(Cn×Cn), this is also found in ref. 6. In the polygraph, let
G be the cycle Cn and set X={(i, i) : i=1,..., n}. Then Wn is isomorphic
to Cn×Cn. The transfer matrix T in Eq. (1) then has shape 2n×2n and
we need to compute trace(Tn), a rather awesome task. Still, it is quite
manageable for n [ 10 on todays computers.

3.1. The Method

We now describe a better way to compute Z(Cn×Cn). Let n be given.
DefineH=Pn+1 as the path on vertices {1, 2,..., n+1} with edges {{1, 2},...,
{n, n+1}}. Define the in-set I={k: 3 [ k [ n, k odd}, the out-set J=
{k: 2 [ k [ n, k even} and a boundary-set K={1, n+1} so that I, J and K
are disjoint and I 2 J 2K={1,..., n+1}, see Fig. 2. Define two types of
transfer matrices S and T, four of each,

Sg(z, t)=Z(H, sI=z, sJ=t, sK=g) y−m(I 2K)

Tg(z, t)=Z(H, sJ=z, sI=t, sK=g) y−m(J 2K)

Note that these matrices have shape 2 N
n−1
2 M×2 N

n
2M and 2 N

n
2M×2 N

n−1
2 M respectively,

considerably smaller than the matrix in Example 3.2. Step by step we will
now build up our grid, each matrix product corresponding to the addition
of a path on the diagonal of the grid.

Theorem 3.3. Let Ki be the boundary-set at the ith step. Then

trace(Sg1Tg2 · · · Sgp−1Tgp )=Z(Wp, sK1=g1,..., sKp=gp) y
−m(K1 2 · · · 2Kp)

Proof. The result follows from Theorem 3.1. L
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Fig. 2. P7 at odd steps (left) and even steps (right).

Now consider Figs. 3 and 4 where each step is a path with edges
marked as dashed lines or full lines. If we identify the vertices labelled with
the same number then the polygraph W2n is isomorphic to the graph
Cn×Cn. With the right choice of spins gi on the boundary-sets the last
theorem gives us the desired partition function. Before we continue some
notation is needed. Let gi, j denote the spin of vertex j in graph H at step i

Fig. 3. The even case, n=4.
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Fig. 4. The odd case, n=5.

so that sKi=gi=(gi, 1, gi, n+1). We count the step index i modulo 2n so
that, e.g., K0 and K2n+1 are identical to K2n and K1 respectively. Given a
boundary g1, 1, g2, 1,..., g2n, 1 it must fulfill that g2i, 1=g2i+1, 1 and g2i, 1=
g2i+n, n+1 for i=1,..., n since these pairs refer to the same vertices. If n is
even we must also have that g2i, n+1=g2i+1, n+1 and if n is odd then we must
have g2i, n+1=g2i−1, n+1 since these pairs again refer to the same vertices.
With these restrictions we only have to specify the g2, 1, g4, 1,..., g2n, 1 (or the
odd steps if that is preferred) since this also defines the remaining gi, j. Let
L be this set of n vertices on the diagonal, see Figs. 3 and 4. Then by
choosing a spin-configuration sL we have also chosen a spin-configuration
g=(g1,..., g2n) of K1,..., K2n by using our rules above. If we use Theorem 3.3
we thus obtain,

Theorem 3.4.

Z(Cn×Cn)=C
sL
Z(Cn×Cn, sL)

=C
sL
trace(Sg1Tg2 · · ·Sg2n−1Tg2n ) y

m(L)

3.2. Symmetry and Tricks

In Theorem 3.4 the sum contains 2n terms, each term corresponding to
a state of the boundary set L. We can however cut down on the amount of
summationworkby approximately a factor 4n. The obvious reduction inwork
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is to only take the sum over all non-isomorphic states. Note that L has
the automorphism group of a cycle on n vertices, i.e., it has 2n automor-
phisms. This reduces the number of terms by approximately a factor 2n.
The second trick is to note that if s is a state of G with energy i and

magnetisation j then the complementary state −s (obtained by setting each
sv to its negative value) has the same energy but magnetisation −j. To
compute a partition function Z from Definition 2.2 we then have to take
the sum over only half of the states, such as those states where one vertex
has its spin fixed to+1, and obtain the sum over the complementary states
afterwards.
Another way to use this is to compute a partial partition function,

such as the sum over the states with negative magnetisation. Let P=
; ai, jx iy j be this sum. To obtain the sum over the states with positive
magnetisation we compute the complementary partition function P̄=
; ai, jx iy−j. The states with magnetisation exactly 0 would have to be
treated separately though.
Now, let U ı V(G) for some graph G where u=|U|. We define two

partial polynomials for when at most u/2 vertices in U have been set to
spin+1; one for m(U) < 0 and one for m(U)=0,

Zg(G)= C
sU

m(U) < 0

Z(G; sU)

Zgg(G)= C
sU

m(U)=0

Z(G; sU)

With these definitions we have

Z(G)=Zg(G)+Z̄g(G)+Zgg(G)

Note that Zgg(G)=0 when u is odd.
We apply this formula to our circumstances by setting U to the

boundary L in Theorem 3.4 and letting G=Cn×Cn. Let {h1,..., hs} be the
set of non-isomorphic states sL having weights w1,..., ws, i.e., hk represents
wk different states, such that m(L) [ 0. Also, let the r first of the hk’s have
m(L) < 0. With the following formulae we conclude our description of the
computational process,

Zg(G)=C
r

k=1
wkZ(G; sL=hk)

Zgg(G)= C
s

k=r+1
wkZ(G; sL=hk)

Z(G)=Zg(G)+Z̄g(G)+Zgg(G)

(2)
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4. PRACTICAL CONSIDERATIONS

The algorithm implicit in the previous sections was implemented in
Fortran 90 and run in parallel using both MPI (for communication
between nodes) and OpenMP on a set of 8-way Nighthawk shared-memory
nodes at the Center for Parallel Computers in Stockholm. The problem is
very suited to running on a parallel computer, being embarrasingly parallel
by its nature. In total, the computation for the 15×15 grid took a little
more than 7 node-months, about 5 cpu-years since each node has 8 cpu’s.
Unfortunately though, the total running time increases more than a factor
8 each time the grids linear size is increased by 1. Memory requirements
were not very imposing, only a few hundred megabytes for n=15, though
this will increase rapidly for each larger grid, more on this below.
Central parts of the software are a module for multi precision integers, (8)

and a module for polynomials, (9) adapted for shared-memory nodes. The
entries of the transfer matrices, which only contains monomials with coef-
ficient one, can be computed very fast with a few bit-operations and are
returned by functions. It is then unnecessary to store the entire matrix, we
only need to store vectors containing polynomials. The data files contain-
ing the resulting polynomials and the complete set of source code can be
obtained from one of the authors (P.H. Lundow), or you can download it
from http://www.math.umu.se/~phl.
We will give a brief description of what seems to be a good way to

organise the computations in practice and at the same time summarise the
previous section. First of all we need to determine the set of non-iso-
morphic spin-configurations sL, i.e., the set {h1,..., hs} and their corre-
spondingweightsw1,..., ws. In other termsweobtain the set of non-isomorphic
2-colourings (using colours ±1) of the vertices in the cycle Cn, though we
keep only those with at most n/2 vertices coloured 1. Store all of these in a
file and pick out the kth colouring which will then be designated the kth
case. There will be somewhat more than 2n−2/n cases to run through.
Now we compute the partition functions Z(G; sL=hk). Given a hk,

which is a spin-configuration of n vertices, we can determine the set of
boundaries gi of Theorem 3.3 for i=1,..., 2n. Having done that we need to
generate the matrices Sg and Tg. Each position, which contains a monomial
in two variables, is easily generated with a few bit-operations.
What is left is to compute the trace of a matrix product. Of course,

one doesn’t have to compute the entire matrix product but only the diago-
nal elements of the product and this is done by taking vector-matrix pro-
ducts. At this point we distribute the computations onto individual nodes
and let each node compute its fair share of the 2 N

n−1
2 M diagonal elements.

Note by the way that for even n the matrices have different shapes.
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If we now have multi-processor nodes with shared memory (a parallell
architecture which is gaining ground) an efficient level of exploiting this is
to distribute the vector-matrix product onto the individual processors. That
is, each processor computes its fair share of the elements in the vector that
results from each vector-matrix product. This gave an almost 100 percent
usage of each node. This is the point where we should mention that for
shared-memory machines it is necessary that each individual polynomial in
the vector is stored separately from the others, i.e., they may not compete
for memory space. The data structure for polynomials that we used
assigned an array of memory space of fixed size to each polynomial
wherein individual monomials could be allocated dynamically.
Having computed the traces on each node we collect them and

compute their sum. This sum is stored and when we have run through all
the cases we compute the complementary partition functions, that is, those
with states sL having m(L) > 0. At this point we then have Zg, Zgg and Zg

from which we may (finally) obtain Z, see Eq. (2).
A word on memory requirements; as a rule of thumb the number of

monomials needed to store each polynomial is a little less than n4/2. Each
monomial consists of a coefficient and two exponents. Observe that the
coefficients requires slightly less than n2−n binary digits (since we keep n
vertices fixed). Let us say that the last n bits are reserved for the exponents
(this is rough counting). There are two vectors to be stored of size at most
2 Nn/2M. The total memory used is then less than n62n/2 bits. The traditional
method requires on the order of n62n bits of memory.

5. PHYSICAL QUANTITIES

In this section we will define some physical quantities that can be
extracted from the combinatorial partition function, see, e.g., refs. 10–12.
In the next section we will analyse the data.

Definition 5.1. With N=n2, the physical partition function is

Zn(K, H)=Z(Cn×Cn; eK, eH)

whereK=−J/kBT andH=−h/kBT are the traditional parameters describ-
ing the interaction through the edges and an external magnetic field
respectively. T is the absolute temperature and kB is Boltzmann’s constant.
We will refer to K as the coupling (or inverse temperature) and H as the
external field. The critical coupling is Kc=arctanh(`2−1)=

1
2 log(`2+1)

% 0.440687.
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We will also let Zn(K)=Zn(K, 0) and write Z instead of Zn, Zn(K) or
Zn(K, H) when the context is clear.
Henceforth we let ñ denote relative energy, i.e., if the energy is i then

ñ=i/m is the relative energy, where m is the number of edges in the graph,
so that −1 [ ñ [ 1. Analogously, we let m̃ denote the relative magnetisa-
tion, i.e., if the magnetisation is j then m̃=j/N is the relative magnetisation,
so that −1 [ m̃ [ 1.
As is traditional, see, e.g., ref. 12, we assume the Boltzmann distribu-

tion on the states and define

Definition 5.2. GivenK andH the probability of being in the state s,
having energy i and magnetisation j, is

Pr[s]=
e iK+jH

Z

Since the sum of the probabilities should be 1 we have

Z=C
s

ensK+msH

Recalling Definition 2.3 of the coefficients ai, j the probability of being in
any state with energy i and magnetisation j is then

Pr[n=i, m=j]=
ai, je iK+jH

Z

Finally, the probability of being in any state with energy i is

Pr[n=i]=C
j
Pr[n=i, m=j]=C

j

ai, je iK+jH

Z

Thanks to this definition it is easy to obtain moments (about zero)
of the magnetisation. Taking the kth derivative of Z, with respect to H,
divided by Z gives us

Z (k)

Z
=

;i, j jkai, je iK+jH

Z
=C

i
C
j
jk Pr[n=i, m=j]

=C
i

C
j
jk Pr[m=j | n=i] Pr[n=i]

=C
i
E[mk | n=i] Pr[n=i]=E[mk]
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and moments for relative magnetisation are of course obtained when
dividing by Nk. Taking the first and second derivatives of log Z gives us the
first and second moments

“ log Z
“H

=
ZŒ
Z
=E[m]

and

“
2 log Z
“H2

=
Zœ
Z
−1ZŒ
Z
22=E[m2]−E[m]2=Var[m]

Note by the way that all odd derivatives of Z (with respect to H) are iden-
tically zero if H=0, that is, Z (k)|H=0 — 0 if k is odd. This is easily shown by
the following:

Z (k)=C
i, j
jkai, je iK+jH=C

i
e iK 1 C

j > 0
jkai, je jH+C

j < 0
jkai, je jH2

={ai, j=ai, −j}=C
i
e iK 1 C

j > 0
jkai, je jH− C

j > 0
jkai, je−jH2

=C
i
e iK C

j > 0
jkai, j(e jH−e−jH)

Setting H=0 also makes every term zero. Without an external field the
expected magnetisation is then always zero and the variance is the same as
the second moment E[m2].
Having evaluated Z (k)(K, 0) for odd k we continue with the even k.

Somewhat frustratingly we can only give explicit formulae for K=H=0.
On the other hand they are valid for all graphs. First we observe that it
follows from the definition of the coefficients ai, j that

C
i
ai, j=1

N
N−j
2

2

Beginning with the simplest case, the 0th derivative, we have

Z(0, 0)=C
i, j
ai, j=2N

The second derivative (with respect to H) is

Z (2)(0, 0)=C
i, j
j2 ai, j=C

j
j2 C

i
ai, j=C

j
j2 1 NN−j

2

2

=[let a=(N−j)/2]=C
a

(N−2a)2 1N
a

2=N2N
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where the last identity can be obtained from, e.g., Mathematica. Continu-
ing in the same manner we get

Z (4)(0, 0)=(3N2−2N) 2N

Z (6)(0, 0)=(15N3−30N2+16N) 2N

Z (8)(0, 0)=(105N4−420N3+588N2−272N) 2N

The kth derivative of log Z with respect to H is called the kth order
cumulant of the magnetisation and we will take a look at them when
H=0. Let Ck denote this quantity. Since each term of the odd derivatives
contain odd derivatives of Z (thus being zero) we are interested only in the
cumulants of even order. The fourth order cumulant is

C4=
“
4 log Z
“H4
:
H=0
=
Z (4)

Z
−3 1Zœ

Z
22

which then is a function of K. What one actually studies is the cumulant
ratio,

R4=1−
Z (4)Z
3(Zœ)2

=1−
Z (4)/Z
3(Zœ/Z)2

which is the cumulant of the distribution normalised to mean 0 and
variance 1. Since C2=Zœ/Z and Z (4)/Z=C4+3C

2
2 we have that

R4=1−
C4+3C

2
2

3C22
=
−C4
3C22

The sixth order cumulant is

C6=
Z (6)

Z
−15

Z (4)Zœ
Z2
+30 1Zœ

Z
23

Then Z (6)/Z=C6+15C2C4+15C
3
2 and the ratio is

R6=1−
Z (4)Z
2(Zœ)2

+
Z (6)Z2

30(Zœ)3
=

C6

30C32

As an alternative way to produce higher derivatives of log Z we should
mention that

1
N
log Z(0, H)=log(2 coshH)=log 2+C

.

k=2

Bk 2k (2k−1) Hk

k! k
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where Bk are the Bernoulli numbers (Bk=0 for odd k > 1) defined by

t
e t−1

=C
.

k=0
Bk
tk

k!

What about derivatives with respect to K? Let us quickly repeat the
above in that case. The first derivative then becomes E[n] and the second
derivative gives us Var[n]. A standard quantity used in statistical physics is
the so called specific heat (a.k.a. heat capacity) and it is obtained from the
next derivative with respect to T, i.e., the temperature.

“
2 log Z
“T “K

=
“
2 log Z
“K2

“K
“T
=
−kB
J
K2 Var[n]

Definition 5.3.

Free energy F=
1
N
log Z,

internal energy E=
“F

“K
, specific heat H=K2

“E

“K
,

magnetisation M=
“F

“H
, susceptibility q=

“M

“H
,

fourth order cumulant ratio R4=
−q (2)

3Nq2
,

sixth order cumulant ratio R6=
q (4)

30N2q3

where q (k) is the kth derivative of q with respect to H. Also, for the
cumulants it is assumed that H=0.

Inserting the expressions for Z(0, 0) we obtain the following values at
K=H=0

F=log 2, q=1, q (2)=−2, q (4)=16,

R4=
2
3N
=o(1), R6=

8
15N2

=o(1)

When necessary we will index the quantities with the linear size of the
graph. Note that the free energy is just a normalised form of log Z. We
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have used this normalisation so that the formulae will match the Onsager
solutions below. With these definitions E=E[n]/N so that −m/N [

E [ m/N. For 2-dimensional square grids we then have −2 [ E [ 2, for
3-dimensional cubic grids we have −3 [ E [ 3 etc. Thus NE/m=E[ñ].
Also, −1 [M [ 1, that is,M=E[m̃] and q/N=Var[m̃].

5.1. The Onsager Solutions

For completeness we state the Onsager solutions (with J=−1), see,
e.g., refs. 13, 10–12, for the infinite 2-dimensional square grid which we will
view as the limit curves of the quantities stated in the previous section when
nQ..
LetK1 be the complete elliptic integral of the first kind defined by

K1(x)=F
p/2

0
(1−x sin h)−1/2 dh

LetK2 be the complete elliptic integral of the second kind defined by

K2(x)=F
p/2

0
(1−x sin h)1/2 dh

Also let

k=
2 sinh(2K)
cosh2(2K)

The free energy for the infinite grid is

F.(K)=log 2+
1
2p2

F
p

0
F
p

0
log[cosh2(2K)− sinh(2K)(cos u+cos v)] du dv

Note that

F.(Kc)=
log 2
2
+
2G
p

% 0.929695

where G % 0.915966 is Catalan’s constant. The internal energy for the
infinite grid is

E.(K)=coth(2K) 11+
2
p
K1(k2)(2 tanh2(2K)−1)2
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The specific heat for the infinite grid is

H.(K)=
2
p
K2 coth2(2K) 52K1(k2)−2K2(k2)−2(1− tanh2(2K))

×1p
2
+K1(k2)(2 tanh2(2K)−1)26

The spontaneous magnetisationMs=limHQ 0+ limnQ. Mn is given by

m̃=Ms(K)=˛
(1− sinh−4(2K))1/8 K >Kc
0 K [Kc

This last formula was first formulated by Onsager in 1948 and derived by
Yang in 1952. A full proof with references is found in ref. 11 (chapter 10).
The inverse of the spontaneous magnetisation follows immediately,

K=M−1
s (m̃)=

arcsinh(1− m̃8)−1/4

2

We will often need to convert between coupling K and relative energy
ñ and for this purpose we use the Onsager solution for internal energy. In
the special case of 2-dimensional square grids we then have ñ=E.(K)/2
and in the other direction, K=E−1. (2ñ). We ignore the problem of actually
formulating the inverse and use numerical methods instead. Using this
formula in combination with the formula for the inverse of the sponta-
neous magnetisation we obtain

ñ=Q(m̃)=
E.(M

−1
s (m̃))
2

(3)

This gives us a formula describing the relation between the relative energy
and relative magnetisation when nQ..
The critical coupling Kc is related to the critical relative energy through

the formula ñc=1/2 tanh(2Kc), and from thisweobtain ñc=1/`2 % 0.7071.
We finish this subject by just mentioning that Q(m̃), plotted in Fig. 15,

has a surprisingly good approximation through the much simpler formula

Q(m̃) %
1

`2
+11− 1

`2
2 m̃6 (4)

which could be used in some practical circumstances. In fact, the difference
between them is less than 0.00253.
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Fig. 5. Free energyF.(K) and internal energy E.(K) vs K/Kc.

Figure 5 show plots of F. and E.. Had we added these plots for, say
n=64, they would hardly be distinguishable from the limit curves. In Fig. 6
we seeHn (for n=4, 8, 16, 32, 64,.) andMs. We will return to the subject
ofMs in a later section.

6. SCALING AT THE CRITICAL TEMPERATURE

We begin with a gallery of pictures. The left picture in Fig. 7 displays
the magnetisation versus coupling and external field for the 14×14 grid.
For an infinite grid we would have a jump in the magnetisation along the
H-axis when K >Kc. The right picture shows the magnetisation at the
critical coupling for a secuence of graphs.
Next, in Fig. 8 we look at the normalised susceptibility q/N and the

quotient −q (2)/q22/7 vs K/Kc at H=0 for n=3,..., 15.
Note that the plots of −q (2)/q22/7 has a local maximum before reach-

ing the critical coupling Kc. For an infinite graph this maximum is supposed
to be approximately 4.93, see ref. 5. The maxima clearly have a bit to go
before reaching that value. The exponent 22/7 is suggested by the theory of
critical exponents. According to this, q (2k)(K)3 (Kc−K)−c−2kD as KQKc
from below, see, e.g., ref. 14. Here c=7/4 is the susceptibility exponent

Fig. 6. Specific heat Hn(K) vs K/Kc (for n=4, 8, 16, 32, 64,.) and the spontaneous
magnetisationMs(K) vs K/Kc.
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Fig. 7. Left:M14 vs K/Kc and H. Right:Mn vs H at Kc, n=3,..., 15.

and D=15/8 is the gap exponent. For k=1 this gives the exponent
(c+2D)/c=22/7.
Figure 9 shows the fourth and sixth order cumulants R4 and R6 at

H=0. For large graphs the fourth and sixth cumulant goes to zero when
KQ 0+. Going in the other direction they behave as R4 Q 2/3 and
R6 Q 8/15 when KQ., see ref. 15.
Having stated and plotted the quantities of interest we shall take a

closer look at their values at the critical coupling without an external field
and see how they scale. In Table I we have tabulated the values of the
various quantities and they match those stated by Baker. (5) Following his
example we estimate an asymptotic value by using linear projections, i.e.,
plotting the values versus 1/n, fitting a straight line to each pair of conse-
cutive points and reading off the value at 0, see Table II. If we assume that
the sequences in the last three columns of Tables I and II are strictly
monotonous then we would have that the limiting value for −q (2)/q22/7

is in the interval (1.65333, 1.66133). Similarly, for R4 we would get the
interval (0.610103, 0.611541) and for R6 the interval (0.463892, 0.465520).

Fig. 8. q/N (left) and −q (2)/q22/7 (right) vs K/Kc at H=0 for n=3,..., 15.
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Fig. 9. Cumulants R4 (left) and R6 (right) vs K/Kc at H=0 for n=3,..., 15.

Table I. Values at K=Kc and H=0

n q −q (2) q (4) −q (2)/q22/7 R4 R6

3 7.28487 888.591 4.46422×105 1.73075 0.620147 0.475197
4 12.1817 4396.28 6.55156×106 1.70159 0.617199 0.471905
5 18.0924 15110.1 5.21870×107 1.68707 0.615476 0.469970
6 24.9594 41334.5 2.83355×108 1.67882 0.614356 0.468707
7 32.7407 96687.6 1.18270×109 1.67366 0.613590 0.467841
8 41.4023 201764. 4.07457×109 1.67019 0.613045 0.467224
9 50.9159 385941. 1.21270×1010 1.66773 0.612644 0.466770
10 61.2568 689322. 3.21637×1010 1.66591 0.612341 0.466426
11 72.4035 1.16480×106 7.77151×1010 1.66453 0.612105 0.466159
12 84.3373 1.88025×106 1.73877×1011 1.66346 0.611918 0.465947
13 97.0410 2.92082×106 3.64702×1011 1.66260 0.611767 0.465776
14 110.500 4.39134×106 7.24039×1011 1.66191 0.611643 0.465636
15 124.699 6.41882×106 1.37093×1012 1.66133 0.611541 0.465520

Table II. Linear Projections

Pair of n −q (2)/q22/7 R4 R6

3–4 1.61414 0.608358 0.462029
4–5 1.62897 0.608580 0.462228
5–6 1.63760 0.608760 0.462394
6–7 1.64268 0.608995 0.462645
7–8 1.64588 0.609230 0.462905
8–9 1.64804 0.609436 0.463136
9–10 1.64959 0.609607 0.463329
10–11 1.65074 0.609747 0.463488
11–12 1.65162 0.609862 0.463618
12–13 1.65231 0.609957 0.463726
13–14 1.65287 0.610037 0.463816
14–15 1.65333 0.610103 0.463892
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Fig. 10. q vs n7/4, −q (2) vs n11/2 and q (4) vs n37/4 at Kc.

Finite-size scaling theory predicts that q(Kc) ’ nc/n where the correla-
tion exponent n=1 for 2D grids, see, e.g., ref. 16. Analogously to what we
said above we then expect q (2k)(Kc) ’ nc+2kD. For k=1 this gives the expo-
nent 11/2 and for k=2 the exponent 37/4. Plotting q versus n7/4 gives a
more or less perfect fit to a straight line. The same holds for −q (2) versus
n11/2 and q (4) versus n37/4, see Fig. 10. Calculating the slopes of the tangents
through pairs of consecutive points in these figures gives us Table III,
each column strictly monotonous. An estimate for the limiting value of
q (2)/q22/7 at K=Kc and H=0 can now be obtained by using the numbers
on the last line in Table III, namely 2.183160/1.09200522/7 % 1.6556. For
the fourth cumulant we get 2.183160/3/1.0920052 % 0.61026 and for the
sixth cumulant 18.12481/30/1.0920053 % 0.46396. These estimates all end
up inside the intervals mentioned above.

6.1. On the Negative Side: Anti-Ferromagnetic Curi(e)osities

As we have seen, our data on their own give us a fairly good idea
about the behaviour of the susceptibility at the critical coupling. But what
about the anti-ferromagnetic side? As one might expect the susceptibility

Table III. Slopes of Consecutive Tangents

Pair of n q q (2) q (4)

3−4 1.094227 2.155778 17.70511
4−5 1.093600 2.168906 17.89712
5−6 1.092866 2.174581 17.98712
6−7 1.092465 2.177551 18.03531
7−8 1.092266 2.179341 18.06421
8−9 1.092163 2.180515 18.08301
9−10 1.092105 2.181330 18.09595
10−11 1.092068 2.181918 18.10525
11−12 1.092044 2.182356 18.11215
12−13 1.092027 2.182691 18.11742
13−14 1.092015 2.182952 18.12154
14−15 1.092005 2.183160 18.12481
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Table IV. Values at − Kc

n q q (2) q (4)

3 0.314282 0.0998332 0.581554
4 0.132012 −0.450649 0.237996
5 0.245970 −0.0803537 0.206457
6 0.141021 −0.539504 0.589793
7 0.220060 −0.176586 −0.00995785
8 0.145477 −0.603225 1.02357
9 0.206176 −0.242816 −0.133967
10 0.148149 −0.652862 1.49646
11 0.197465 −0.293701 −0.2101
12 0.149931 −0.693546 1.99224
13 0.191475 −0.335126 −0.257903
14 0.151205 −0.728028 2.50327
15 0.187100 −0.370097 −0.287064

vanishes as KQ −., but in the vicinity of −Kc something peculiar is
going on. The left plot of Fig. 11 shows the behaviour of q around −Kc,
the odd n approaching from above, the even n from below. Are they con-
verging to the same limit curve? The values of q(−Kc) plotted versus 1/n
looks very much like a straight line. As we did at the end of the previous
section we fit a straight line to the last two points, see the right plot of Fig. 11.
For even n this line intersects the y-axis at 0.158850 and for odd n this
happens at 0.158664. It is tempting to suggest that the limit is located
inside this interval but, alas, it was shown in ref. 17 (we thank one of the
referees for this reference) that the correct value is 0.15886652296 which
falls just outside our interval. It is somewhat surprising though that we get
four correct digits by studying such small grids.
A distinguishing feature of the anti-ferromagnetic side is the difference

in behaviour between odd and even grids. On the ferromagnetic side there
are no such discernible differences.

Fig. 11. Left: q vs K/Kc. Right: q at K=−Kc vs 1/n.
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Fig. 12. q (2) (left) and q (2)/q (right) vs K/Kc

Figure 12 displays q2 and q (2)/q, in both cases the even n are above
the odd n. The behaviour is quite similar for higher derivatives as well.
The susceptibility and its derivatives vanishes as KQ −. though they

do so at different rates. The quotient between these rates are possibly con-
stants. We finish this section by guessing some limits when nQ. and
KQ −., in fact, the statements seems to hold for all fixed even n, though
only for large odd n.

q (2)/qQ − 12 for odd n, q (2)/qQ 4 for even n

q (4)/qQ 1 for odd n, q (4)/qQ 16 for even n

7. THE POLYNOMIALS

Let us now take a look at the coefficients of the polynomials. We
dismiss the empty energies and magnetisations though. We see here a phe-
nomenon which is found in many graphs and in particular seems to be the
rule for the square shaped grids, namely that above a certain critical energy
the distribution of the magnetisations undergoes a phase transition; we go
from a unimodal distribution to a bimodal distribution, giving the coeffi-
cients a horn-shaped feature, see the contour plot of Fig. 13 which is nor-
malised so that at each energy the greatest coefficient is 1. An early study
of this phenomenon can be found in ref. 15, see also ref. 18. There are more
complicated phase transitions in our data; thus for instance oblong grids,
say of the form Cn×C3n appear to have a phase transition where the coef-
ficients jump from a unimodal to a trimodal distribution before eventually
settling down to a bimodal distribution. These facts shall be featured more
prominently elsewhere. There is also a region close to the border where the
distribution of coefficients on a nonempty energy level tend to have small
local maxima in the interior, the left plot of Fig. 14 shows this phenomena.
This phase transition shall not be discussed further.
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Fig. 13. Left: Coefficients for 14×14. Normalised to max coefficient 1 at each energy.
Magnetisation on the x-axis and energy on the y-axis. Right: Table of critical energies.

The right plot of Fig. 14 displays the local maxima along the energies.
This curve looks suspiciously like a perfect x2 curve and indeed that is what
it is. Actually, given a fixed magnetisation j, the expected energy of an edge
e={u, v}, and thus the expected relative energy, can be determined exactly.
This is done in ref. 18 from which we quote the following formulae. Let us
denote by k the number of +1 spins, i.e., k=(N+j)/2. Then the number
of states with su=sv=+1 is (

N−2
k−2), the number of states with both spins

−1 is (N−2k ) and the number of states with different spins is 2(
N−2
k−1). In total,

the expected energy on edge e is

E[ñ | m=j]=E[susv | m=j]=
(N−2k−2)−2(

N−2
k−1)+(

N−2
k )

(Nk)

=
N2−N−4Nk+4k2

N2−N
=[with k=(N+j)/2]

=1−
N2

N2−N
+

j2

N2−N
’ 1 j
N
22=m̃2

Higher moments can be determined as well, but we will leave this matter
after just saying that the distribution (i.e., of energies) is highly concen-
trated around its mean.
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Fig. 14. Locations of local maxima for n=14 along the magnetisations (left) and energies
(right). Magnetisation on the x-axis and energy on the y-axis.

If we focus our attention on the unimodal to bimodal phase transition
(the existence of which by the way does not seem to be established
rigorously), the question is then, at what critical energy does this take place
and what is the asymptotic behaviour for our given family of graphs?

Definition 7.1. The critical energy nc of a graph G is the maximum
energy where the distribution of magnetisations is unimodal.

The table in Fig. 13 lists where this phase transition takes place for our
graphs. In the next section we will return to this subject. The left plot of
Fig. 15 shows how the distributions of the magnetisations (i.e., the sum is
normalised to 1) change for the 14×14 grid as the energy increases, from
unimodal to bimodal. Binder (15) plots similar curves based upon sampled
data (versus temperature though).

Fig. 15. Left: distributions for n=14 at energies 160, 180, 200, 220 and 240. Right: location
of peaks vs m̃ for n=8,..., 15, 32, 64, 128,..

Ising Partition Function for 2D Grids 453



Fig. 16. The sequence ai, 1/ai vs i/m and its first and second derivatives for n=15.

The right plot of Fig. 15 shows the locations of the peaks of the dis-
tributions for all the exactly computed graphs. It also shows the peaks for
the 32×32, 64×64 and the 128×128 grid, based on sampled data, and the
asymptotic peak obtained from Eq. (3) above. We will return to this in the
next subsection.
From the left plot of Fig. 15 we see that the probability for zero-mag-

netisation goes to zero as the energy increases. In Fig. 16 we plot the quo-
tient ai, 1/ai versus i/m for the 15×15 grid (i.e., the middle-magnetisation;
for even grids one should plot ai, 0/ai) together with its first and second
derivatives.

7.1. The Shape of the Horn

Due to the Onsager formula for spontaneous magnetisation we know
what the relative magnetisation will be at each coupling (for a large graph),
and ñ=Q(m̃) in Eq. (3) expresses the inverse returning the relative energy
instead. We have not yet defined this for finite graphs however. For a finite
graph we define the peak magnetisation at a given energy as the location of
the peak in the distribution of the magnetisation.

Definition 7.2. Let the sequence of ai, j be given and let Ai=
maxj ai, j. At energy i the peak magnetisation Pn(i/m) is the greatest j/N
such that Ai=ai, j. We also define Qn(j/N)=P

−1
n (|j/N|) and set Qn(0)

=ñc.

Thus Qn describes the shape of the horn of Fig. 13 in terms of rela-
tive magnetisation. We will tacitly assume that the peak magnetisation
approaches the spontaneous magnetisation as nQ.. It should be possible
to prove that the distribution actually becomes concentrated in this manner
as n grows, though we will not attempt this here. The right plot in Fig. 15
shows Qn(m̃) for n=8,..., 15, 32, 64, 128,. (after interpolation) and this
plot clearly suggests that Qn Q Q as nQ.. The natural question at this
point is to ask what the difference between the limiting Q and the individ-
ual Qn is and at what rate the difference vanish with increasing n.
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Fig. 17. 0th, 2nd and 4th coefficient vs n−3/4, n−5/8 and n−1 resp. for n=8,..., 15, 32,
64, 128,..

The difference Q−Qn seems to be nicely fit by a 4th degree polyno-
mial so we will settle for this. In Fig. 17 we plot, from left to right, the
coefficients of x0 versus n−3/4, the coefficients of x2 versus n−5/8 and the
coefficients of x4 versus n−1 respectively. Together with the data points
are also shown the guessed functions 16x/9, −2x and 2x5/8−16x3/4/9
respectively. This last function determines itself since we want the function
to go through the points (±1, 0). The plots are based upon data for
n=8,..., 15, 32, 64, 128,. (we use sampled data for n=32, 64, 128).
First, and most important, the 0th coefficient says at what energy

the distribution of magnetisations goes from unimodal to bimodal. The
straight line fitted here is rather convincing. The coefficient 16/9 % 1.777 is
a nice square but we might as well suggest the more elegant`p % 1.772.
For the 2nd coefficient the straight line is perhaps less convincing,

determining the correct exponent of n is not that easy in this case.
Somewhat disappointing, as the last picture shows, the fit is not very good
for the 4th coefficient. However, this does not seem to matter all that much
since the suggested approximation function in Eq. (5) gives a virtually
perfect fit to the real data.

Qn(x) % Q(x)−[
16
9 n

−3/4−2n−5/8x2−(169 n
−3/4−2n−5/8) x4] (5)

7.2. The Variance of the Horn

If we look at one side of the distributions shown in Fig. 15 we see how
their widths vary with increasing energy. It seems that around the critical
energy, just before the distribution becomes bimodal, the width is at its
greatest. Let us then look at how the variance of the relative magnetisation
changes with the relative energy. However, we only look at the variance of
the absolute magnetisations, i.e., Var[|m̃|].
The first plot in Fig. 18 shows this variance for n=8,..., 15, 32, 64

and 128 (again, 32, 64, 128 are based upon sampled and slightly smoothed
data). In the limit when nQ. we expect the variance to approach zero,
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Fig. 18. Left: Var[|m̃|] vs ñ for n=8,..., 15, 32, 64, 128. Middle: maxVar[|m̃|] vs n−1. Right:
1

`2
−maxloc Var[|m̃|] vs n−4/5.

i.e., all the magnetisations concentrate on the shape of spontaneous mag-
netisation and are zero below 1/`2. The plots in Fig. 18 supports this claim.
The maximum variance tends to decrease as n grows, but at what rate?

The second plot in Fig. 18 shows the maximum variance versus 1/n but we
have no good suggestion of what formula these points obey. That the
variance is slowly decreasing should be clear though.
Where is the maximum variance located? As nQ. we expect it to

approach 1/`2. The last plot of Fig 18 shows the difference between the
location of the maximums and 1/`2 versus n−4/5 together with the guessed
function 16x/15. The fit is quite convincing, so we dare suggest that the
location of the maximum is in the vicintity of 1/`2− 1615 n

−4/5.
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